Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Front Immunol ; 13: 809264, 2022.
Article in English | MEDLINE | ID: covidwho-1979036

ABSTRACT

Memory B cells (MBCs) and plasma antibodies against Plasmodium falciparum (Pf) merozoite antigens are important components of the protective immune response against malaria. To gain understanding of how responses against Pf develop in these two arms of the humoral immune system, we evaluated MBC and antibody responses against the most abundant merozoite antigen, full-length Pf merozoite surface protein 1 (PfMSP1FL), in individuals from a region in Uganda with high Pf transmission. Our results showed that PfMSP1FL-specific B cells in adults with immunological protection against malaria were predominantly IgG+ classical MBCs, while children with incomplete protection mainly harbored IgM+ PfMSP1FL-specific classical MBCs. In contrast, anti-PfMSP1FL plasma IgM reactivity was minimal in both children and adults. Instead, both groups showed high plasma IgG reactivity against PfMSP1FL, with broadening of the response against non-3D7 strains in adults. The B cell receptors encoded by PfMSP1FL-specific IgG+ MBCs carried high levels of amino acid substitutions and recognized relatively conserved epitopes on the highly variable PfMSP1 protein. Proteomics analysis of PfMSP119-specific IgG in plasma of an adult revealed a limited repertoire of anti-MSP1 antibodies, most of which were IgG1 or IgG3. Similar to B cell receptors of PfMSP1FL-specific MBCs, anti-PfMSP119 IgGs had high levels of amino acid substitutions and their sequences were predominantly found in classical MBCs, not atypical MBCs. Collectively, these results showed evolution of the PfMSP1-specific humoral immune response with cumulative Pf exposure, with a shift from IgM+ to IgG+ B cell memory, diversification of B cells from germline, and stronger recognition of PfMSP1 variants by the plasma IgG repertoire.


Subject(s)
Malaria , Merozoite Surface Protein 1 , Adult , Animals , Antibodies, Protozoan , Antibody Formation , Child , Humans , Immunoglobulin G , Immunoglobulin M/metabolism , Memory B Cells , Merozoites , Plasmodium falciparum , Receptors, Antigen, B-Cell/metabolism , Uganda
2.
Front Immunol ; 13: 790334, 2022.
Article in English | MEDLINE | ID: covidwho-1715001

ABSTRACT

The capacity of pre-existing immunity to human common coronaviruses (HCoV) to cross-protect against de novo COVID-19is yet unknown. In this work, we studied the sera of 175 COVID-19 patients, 76 healthy donors and 3 intravenous immunoglobulins (IVIG) batches. We found that most COVID-19 patients developed anti-SARS-CoV-2 IgG antibodies before IgM. Moreover, the capacity of their IgGs to react to beta-HCoV, was present in the early sera of most patients before the appearance of anti-SARS-CoV-2 IgG. This implied that a recall-type antibody response was generated. In comparison, the patients that mounted an anti-SARS-COV2 IgM response, prior to IgG responses had lower titres of anti-beta-HCoV IgG antibodies. This indicated that pre-existing immunity to beta-HCoV was conducive to the generation of memory type responses to SARS-COV-2. Finally, we also found that pre-COVID-19-era sera and IVIG cross-reacted with SARS-CoV-2 antigens without neutralising SARS-CoV-2 infectivity in vitro. Put together, these results indicate that whilst pre-existing immunity to HCoV is responsible for recall-type IgG responses to SARS-CoV-2, it does not lead to cross-protection against COVID-19.


Subject(s)
Betacoronavirus/physiology , COVID-19/immunology , Common Cold/immunology , Immunoglobulins, Intravenous/therapeutic use , SARS-CoV-2/physiology , Aged , Aged, 80 and over , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Antigens, Viral/immunology , COVID-19/mortality , COVID-19/therapy , Cross Reactions , Female , Humans , Immunity, Heterologous , Immunoglobulin G/metabolism , Immunoglobulin M/metabolism , Immunologic Memory , Male , Middle Aged , Survival Analysis
3.
Nat Immunol ; 22(11): 1452-1464, 2021 11.
Article in English | MEDLINE | ID: covidwho-1454797

ABSTRACT

There is limited understanding of the viral antibody fingerprint following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children. Herein, SARS-CoV-2 proteome-wide immunoprofiling of children with mild/moderate or severe coronavirus disease 2019 (COVID-19) versus multisystem inflammatory syndrome in children versus hospitalized control patients revealed differential cytokine responses, IgM/IgG/IgA epitope diversity, antibody binding and avidity. Apart from spike and nucleocapsid, IgG/IgA recognized epitopes in nonstructural protein (NSP) 2, NSP3, NSP12-NSP14 and open reading frame (ORF) 3a-ORF9. Peptides representing epitopes in NSP12, ORF3a and ORF8 demonstrated SARS-CoV-2 serodiagnosis. Antibody-binding kinetics with 24 SARS-CoV-2 proteins revealed antibody parameters that distinguish children with mild/moderate versus severe COVID-19 or multisystem inflammatory syndrome in children. Antibody avidity to prefusion spike correlated with decreased illness severity and served as a clinical disease indicator. The fusion peptide and heptad repeat 2 region induced SARS-CoV-2-neutralizing antibodies in rabbits. Thus, we identified SARS-CoV-2 antibody signatures in children associated with disease severity and delineate promising serodiagnostic and virus neutralization targets. These findings might guide the design of serodiagnostic assays, prognostic algorithms, therapeutics and vaccines in this important but understudied population.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/complications , COVID-19/immunology , SARS-CoV-2/immunology , Systemic Inflammatory Response Syndrome/immunology , Adolescent , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19/diagnosis , Child , Child, Preschool , Disease Progression , Epitopes/metabolism , Female , Hospitalization , Humans , Immunity, Humoral , Immunoglobulin A/metabolism , Immunoglobulin G/metabolism , Immunoglobulin M/metabolism , Male , Prognosis , Proteome , Severity of Illness Index , Systemic Inflammatory Response Syndrome/diagnosis
4.
Clin Chem Lab Med ; 59(11): 1878-1884, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1341521

ABSTRACT

OBJECTIVES: Numerous analytical systems, rapidly made available on the market throughout the SARS-CoV-2 pandemic, aim to detect COVID-19, and to continuously update and improve the same systems. Medical laboratory professionals have also developed in-house analytical procedures in order to satisfy the enormous volume of requests for tests. These developments have highlighted the need control the analytical procedures used in order to guarantee patient safety. The External Quality Assessment (EQA) Scheme, an important quality assurance tool, aims to guarantee high standard performance for laboratory and analytical procedures. The aim of the present study was to report on the results collected in an experimental EQA scheme for the serological diagnosis of SARS-CoV-2. METHODS: All qualitative results collected in the different EQA surveys were summarized in order to identify the percentage of laboratory results in relation to typology of antibodies, results and samples. RESULTS: A total of 4,867 data sets were collected. The analysis of EQA data made, demonstrates a better agreement among laboratories results for total Ig than single immunoglobulins (IgG, IgM, IgA) in the case samples positive for SARS-CoV-2, and a wide divergence between IgM results for positive samples (only 34.9% were correct). Results for negative controls and specificity controls demonstrated a better overall agreement than results for positive samples. CONCLUSIONS: Working in collaboration with the IVD manufacturers, laboratory professionals must strive to achieve harmonization of results, and to develop well-defined protocols complying with the ISO 15189 requirements.


Subject(s)
Antibodies, Viral/immunology , COVID-19/diagnosis , SARS-CoV-2/immunology , Serologic Tests/methods , Antibodies, Viral/blood , COVID-19/immunology , Humans , Immunoglobulin A/blood , Immunoglobulin A/metabolism , Immunoglobulin G/blood , Immunoglobulin G/metabolism , Immunoglobulin M/blood , Immunoglobulin M/metabolism , Pilot Projects , Quality Assurance, Health Care , Retrospective Studies , Sensitivity and Specificity , Severity of Illness Index
6.
Front Immunol ; 12: 695230, 2021.
Article in English | MEDLINE | ID: covidwho-1285296

ABSTRACT

A detailed understanding of the antibody response against SARS-CoV-2 is of high importance, especially with the emergence of novel vaccines. A multiplex-based assay, analyzing IgG, IgM, and IgA antibodies against the receptor binding domain (RBD), spike 1 (S1), and nucleocapsid proteins of the SARS-CoV-2 virus was set up. The multiplex-based analysis was calibrated against the Elecsys® Anti-SARS-CoV-2 assay on a Roche Cobas® instrument, using positive and negative samples. The calibration of the multiplex based assay yielded a sensitivity of 100% and a specificity of 97.7%. SARS-CoV-2 specific antibody levels were analyzed by multiplex in 251 samples from 221 patients. A significant increase in all antibody types (IgM, IgG, and IgA) against RBD was observed between the first and the third weeks of disease. Additionally, the S1 IgG antibody response increased significantly between weeks 1, 2, and 3 of disease. Class switching appeared to occur earlier for IgA than for IgG. Patients requiring hospital admission and intensive care had higher levels of SARS-CoV-2 specific IgA levels than outpatients. These findings describe the initial antibody response during the first weeks of disease and demonstrate the importance of analyzing different antibody isotypes against multiple antigens and include IgA when examining the immunological response to COVID-19.


Subject(s)
Antibodies, Viral/metabolism , COVID-19/immunology , Immunoglobulin A/metabolism , Immunoglobulin G/metabolism , Immunoglobulin M/metabolism , SARS-CoV-2/immunology , Adult , Aged , Antibody Formation , Female , Humans , Male , Middle Aged , Protein Domains/immunology , Spike Glycoprotein, Coronavirus/immunology
7.
Front Immunol ; 12: 646894, 2021.
Article in English | MEDLINE | ID: covidwho-1285286

ABSTRACT

The origin and the global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) in early 2020 was accompanied by high rates of mortality in regions belonging to the ancient silk road, such as the south of China, Iran, Turkey and the northern parts of Italy. However, children seem to be spared in the epidemic as very small percentage worldwide being ill. The protection of children and neonates suggests the involvement of a specific component of adaptive immunity present at early development. Native immunoglobulin belonging to the class of IgM is abundantly present in neonates and children and is known for its recognition of self- and altered self-antigens. Native IgM may be able to neutralize virus by the recognition of endogenous "danger signal" encoded in the viral envelope and originally imprinted in the membranes of infected and stressed cells. Noteworthy, thrombosis and vasculitis, two symptoms in severely affected adult and pediatric patients are shared between COVID-19 and patients with Behcet's disease, an autoimmune disorder exhibiting a region-specific prevalence in countries of the former silk road. Molecular mechanisms and clinical indicators suggest reactive oxygen species as trigger factor for severe progression of COVID-19 and establish a link to the innate immune defense against bacteria. The selective pressure exerted by bacterial pathogens may have shaped the genetics of inhabitants at this ancient trade route in favor of bacterial defense, to the detriment of severe COVID-19 progression in the 21th century.


Subject(s)
B-Lymphocytes/immunology , COVID-19/immunology , Models, Immunological , SARS-CoV-2/physiology , Adult , Angiotensin-Converting Enzyme 2/metabolism , Autoantigens/immunology , COVID-19/epidemiology , Child , Disease Susceptibility , Humans , Immunoglobulin M/metabolism , Pathogen-Associated Molecular Pattern Molecules/immunology , Prevalence , Risk , Socioeconomic Factors
8.
Cell Rep Med ; 2(4): 100253, 2021 04 20.
Article in English | MEDLINE | ID: covidwho-1195473

ABSTRACT

The fate of protective immunity following mild severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection remains ill defined. Here, we characterize antibody responses in a cohort of participants recovered from mild SARS-CoV-2 infection with follow-up to 6 months. We measure immunoglobulin A (IgA), IgM, and IgG binding and avidity to viral antigens and assess neutralizing antibody responses over time. Furthermore, we correlate the effect of fever, gender, age, and time since symptom onset with antibody responses. We observe that total anti-S trimer, anti-receptor-binding domain (RBD), and anti-nucleocapsid protein (NP) IgG are relatively stable over 6 months of follow-up, that anti-S and anti-RBD avidity increases over time, and that fever is associated with higher levels of antibodies. However, neutralizing antibody responses rapidly decay and are strongly associated with declines in IgM levels. Thus, while total antibody against SARS-CoV-2 may persist, functional antibody, particularly IgM, is rapidly lost. These observations have implications for the duration of protective immunity following mild SARS-CoV-2 infection.


Subject(s)
Antibodies, Neutralizing/metabolism , COVID-19/immunology , Immunoglobulin M/metabolism , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , COVID-19/complications , COVID-19/pathology , COVID-19/virology , Female , Fever/etiology , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Middle Aged , Neutralization Tests , Nucleocapsid Proteins/immunology , Protein Domains/immunology , Protein Multimerization/immunology , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Severity of Illness Index , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Time Factors , Young Adult
9.
Clin Infect Dis ; 71(16): 2027-2034, 2020 11 19.
Article in English | MEDLINE | ID: covidwho-1153138

ABSTRACT

BACKGROUND: The novel coronavirus SARS-CoV-2 is a newly emerging virus. The antibody response in infected patients remains largely unknown, and the clinical value of antibody testing has not been fully demonstrated. METHODS: 173 patients with SARS-CoV-2 infection were enrolled. Their serial plasma samples (n = 535) collected during hospitalization were tested for total antibodies (Ab), IgM, and IgG against SARS-CoV-2. The dynamics of antibodies with disease progress were analyzed. RESULTS: Among 173 patients, the seroconversion rates for Ab, IgM, and IgG were 93.1%, 82.7%, and 64.7%, respectively. The reason for the negative antibody findings in 12 patients might be due to the lack of blood samples at the later stage of illness. The median seroconversion times for Ab, IgM, and then IgG were days 11, 12, and 4, respectively. The presence of antibodies was <40% among patients within 1 week of onset, and rapidly increased to 100.0% (Ab), 94.3% (IgM), and 79.8% (IgG) by day 15 after onset. In contrast, RNA detectability decreased from 66.7% (58/87) in samples collected before day 7 to 45.5% (25/55) during days 15-39. Combining RNA and antibody detection significantly improved the sensitivity of pathogenic diagnosis for COVID-19 (P < .001), even in the early phase of 1 week from onset (P = .007). Moreover, a higher titer of Ab was independently associated with a worse clinical classification (P = .006). CONCLUSIONS: Antibody detection offers vital clinical information during the course of SARS-CoV-2 infection. The findings provide strong empirical support for the routine application of serological testing in the diagnosis and management of COVID-19 patients.


Subject(s)
COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Adult , Aged , Antibodies, Viral/metabolism , Antibody Formation/physiology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin G/metabolism , Immunoglobulin M/metabolism , Male , Middle Aged , Pandemics , Serologic Tests
10.
PLoS One ; 16(1): e0244855, 2021.
Article in English | MEDLINE | ID: covidwho-1052436

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of the pandemic human respiratory illness COVID-19, is a global health emergency. While severe acute disease has been linked to an expansion of antibody-secreting plasmablasts, we sought to identify B cell responses that correlated with positive clinical outcomes in convalescent patients. We characterized the peripheral blood B cell immunophenotype and plasma antibody responses in 40 recovered non-hospitalized COVID-19 subjects that were enrolled as donors in a convalescent plasma treatment study. We observed a significant negative correlation between the frequency of peripheral blood memory B cells and the duration of symptoms for convalescent subjects. Memory B cell subsets in convalescent subjects were composed of classical CD24+ class-switched memory B cells, but also activated CD24-negative and natural unswitched CD27+ IgD+ IgM+ subsets. Memory B cell frequency was significantly correlated with both IgG1 and IgM responses to the SARS-CoV-2 spike protein receptor binding domain (RBD) in most seropositive subjects. IgM+ memory, but not switched memory, directly correlated with virus-specific antibody responses, and remained stable over 3 months. Our findings suggest that the frequency of memory B cells is a critical indicator of disease resolution, and that IgM+ memory B cells may play an important role in SARS-CoV-2 immunity.


Subject(s)
B-Lymphocyte Subsets/immunology , COVID-19/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation , B-Lymphocytes/immunology , Convalescence , Disease Progression , Female , Humans , Immunity/immunology , Immunoglobulin G/immunology , Immunoglobulin M/metabolism , Immunophenotyping/methods , Male , Middle Aged , Recovery of Function/immunology , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification
11.
Immunobiology ; 226(3): 152027, 2021 05.
Article in English | MEDLINE | ID: covidwho-907065

ABSTRACT

While the angiotensin converting enzyme 2 (ACE2) protein is defined as the primary severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor, the viral serine molecule might be mobilized by the host's transmembrane protease serine subtype 2 (TMPRSS2) enzyme from the viral spike (S) protein and hijack the host's N-acetyl-D-galactosamine (GalNAc) metabolism. The resulting hybrid, serologically A-like/Tn (T nouvelle) structure potentially acts as a host-pathogen functional molecular bridge. In humans, this intermediate structure will hypothetically be replaced by ABO(H) blood group-specific, mucin-type structures, in the case of infection hybrid epitopes, implicating the phenotypically glycosidic accommodation of plasma proteins. The virus may, by mimicking the synthetic pathways of the ABO(H) blood groups, bind to the cell surfaces of the blood group O(H) by formation of a hybrid H-type antigen as the potential precursor of hybrid non-O blood groups, which does not affect the highly anti-glycan aggressive anti-A and anti-B isoagglutinin activities, exerted by the germline-encoded nonimmune immunoglobulin M (IgM). In the non-O blood groups, which have developed from the H-type antigen, these IgM activities are downregulated by phenotypic glycosylation, while adaptive immunoglobulins might arise in response to the hybrid A and B blood group structures, bonds between autologous carbohydrates and foreign peptides, suggesting the exertion of autoreactivity. The non-O blood groups thus become a preferred target for the virus, whereas blood group O(H) individuals, lacking the A/B phenotype-determining enzymes and binding the virus alone by hybrid H-type antigen formation, have the least molecular contact with the virus and maintain the critical anti-A and anti-B isoagglutinin activities, exerted by the ancestral IgM, which is considered the humoral spearhead of innate immunity.


Subject(s)
Blood Group Antigens/metabolism , COVID-19/immunology , SARS-CoV-2/physiology , Animals , Blood Group Antigens/genetics , Carbohydrate Metabolism , Disease Resistance , Humans , Immunoglobulin M/metabolism , Phenotype , Risk
12.
Biol Direct ; 15(1): 21, 2020 11 02.
Article in English | MEDLINE | ID: covidwho-901910

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection spreaded rapidly worldwide, as far as it has become a global pandemic. Therefore, the introduction of serological tests for determination of IgM and IgG antibodies has become the main diagnostic tool, useful for tracking the spread of the virus and for consequently allowing its containment. In our study we compared point of care test (POCT) lateral flow immunoassay (FIA) vs automated chemiluminescent immunoassay (CLIA), in order to assess their specificity and sensibility for COVID-19 antibodies detection. RESULTS: We find that different specificities and sensitivities for IgM and IgG tests. Notably IgM POCT FIA method vs CLIA method (gold standard) has a low sensitivity (0.526), while IgG POCT FIA method vs CLIA method (gold standard) test has a much higher sensitivity (0.937); further, with respect of IgG, FIA and CLIA could arguably provide equivalent information. CONCLUSIONS: FIA method could be helpful in assessing in short time, the possible contagiousness of subjects that for work reasons cannot guarantee "social distancing".


Subject(s)
Coronavirus Infections/blood , Pneumonia, Viral/blood , Serologic Tests , Amino Acid Sequence , COVID-19 , Female , Humans , Immunoassay , Immunoglobulin M/metabolism , Luminescent Measurements , Male , Middle Aged , Pandemics , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
13.
Lancet Infect Dis ; 20(9): e245-e249, 2020 09.
Article in English | MEDLINE | ID: covidwho-654310

ABSTRACT

The collapse of global cooperation and a failure of international solidarity have led to many low-income and middle-income countries being denied access to molecular diagnostics in the COVID-19 pandemic response. Yet the scarcity of knowledge on the dynamics of the immune response to infection has led to hesitation on recommending the use of rapid immunodiagnostic tests, even though rapid serology tests are commercially available and scalable. On the basis of our knowledge and understanding of viral infectivity and host response, we urge countries without the capacity to do molecular testing at scale to research the use of serology tests to triage symptomatic patients in community settings, to test contacts of confirmed cases, and in situational analysis and surveillance. The WHO R&D Blue Print expert group identified eight priorities for research and development, of which the highest is to mobilise research on rapid point-of-care diagnostics for use at the community level. This research should inform control programmes of the required performance and utility of rapid serology tests, which, when applied specifically for appropriate public health measures to then be put in place, can make a huge difference.


Subject(s)
Antibodies, Viral/metabolism , Betacoronavirus/isolation & purification , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Antibodies, Viral/blood , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , COVID-19 Testing , Contact Tracing/methods , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Humans , Immunoglobulin G/blood , Immunoglobulin G/metabolism , Immunoglobulin M/blood , Immunoglobulin M/metabolism , Pandemics/prevention & control , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , RNA, Viral/analysis , SARS-CoV-2 , Time Factors , Triage/methods , Virus Shedding
14.
Clin Microbiol Infect ; 26(8): 1082-1087, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-594311

ABSTRACT

OBJECTIVES: To evaluate the diagnostic performance of seven rapid IgG/IgM tests and the Euroimmun IgA/IgG ELISA for antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in COVID-19 patients. METHODS: Specificity was evaluated in 103 samples collected before January 2020. Sensitivity and time to seropositivity was evaluated in 167 samples from 94 patients with COVID-19 confirmed with RT-PCR on nasopharyngeal swab. RESULTS: Specificity (confidence interval) of lateral flow assays (LFAs) was ≥91.3% (84.0-95.5) for IgM, ≥90.3% (82.9-94.8) for IgG, and ≥85.4% (77.2-91.1) for the combination IgM OR IgG. Specificity of the ELISA was 96.1% (90.1-98.8) for IgG and only 73.8% (64.5-81.4) for IgA. Sensitivity 14-25 days after the onset of symptoms was between ≥92.1% (78.5-98.0) and 100% (95.7-100) for IgG LFA compared to 89.5% (75.3-96.4) for IgG ELISA. Positivity of IgM OR IgG for LFA resulted in a decrease in specificity compared to IgG alone without a gain in diagnostic performance, except for VivaDiag. The results for IgM varied significantly between the LFAs with an average overall agreement of only 70% compared to 89% for IgG. The average dynamic trend to seropositivity for IgM was not shorter than for IgG. At the time of hospital admission the sensitivity of LFA was <60%. CONCLUSIONS: Sensitivity for the detection of IgG antibodies 14-25 days after the onset of symptoms was ≥92.1% for all seven LFAs compared to 89.5% for the IgG ELISA. The results for IgM varied significantly, and including IgM antibodies in addition to IgG for the interpretation of LFAs did not improve the diagnostic performance.


Subject(s)
Antibodies, Viral/analysis , Antigens, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Adult , Aged , Aged, 80 and over , COVID-19 , Coronavirus Infections/immunology , Diagnostic Tests, Routine , Female , Humans , Immunoglobulin A/metabolism , Immunoglobulin G/metabolism , Immunoglobulin M/metabolism , Male , Middle Aged , Pandemics , Pneumonia, Viral/immunology , SARS-CoV-2 , Sensitivity and Specificity , Time Factors , Young Adult
15.
Allergy ; 75(7): 1546-1554, 2020 07.
Article in English | MEDLINE | ID: covidwho-116569
SELECTION OF CITATIONS
SEARCH DETAIL